
10 Months with
Meteor.js

Who we are

● Phillip Jacobs - Runs the Austin Meteor
meetup. Lots of experience in enterprise
web applications. Now with Tastemade
working on our Meteor powered platform.

● Jason Griffin - Previously at Pluck, Demand
Media, and now at Tastemade. Built web
apps for 15 years, managed teams large and
small, and built the backend that powers
eHow.com, Livestrong.com, and dozens of
other sites.

● Our mission is to connect the world through
food.

● We make apps and videos for food lovers.
● We have a 5000sqft studio in LA and

development office here in Austin
● Just finished our series B.
● We're hiring web, iOS, Android, and QA.

How many have worked
with Meteor, MongoDB,
Node.js, Handlebars.js?

What is Meteor?

● Front to back platform for building real-time
web applications

● The database, server framework, and
templating engines are fixed

● Everything is written in Javascript. You can
share code between the client and server.

Architecture

● MongoDB/Minimongo
● Node.js
● Sock.js
● Handlebars.js
● Plus plenty of Meteor glue
● At Tastemade we use Coffeescript and Jade

HTML templates (compiles to Javascript and
HTML)

What kind of apps should you build
with Meteor?

● Single page
● Real-time
● Page-based is possible using routing

How many have worked
with real-time pub sub?

Pub Sub

● Define collections for each entity type that
are shared between server and client

● Use subscriptions to copy a subset of the
database to the client based on the current
session set

Querying and Updates

● Use regular MongoDB syntax directly on the
client

● Insert, Updates, Deletes (only by _id)

Demo - models,
collections, pubsub

Latency compensation

● Updates are applied on the client first and
immediately redrawn

● Changes are propagated to the server and
stored

● Changes are then broadcasted to other
clients

Reactive Templates

● Access collection from the template. When
the data is updated the template is
automatically redrawn

● Handlers for events
● Reactivity isolation
● Constant regions

Session

● Also supports client side session state that
are also reactive variables

● Use to track the state of the application

Router

● Built-in router
● Backbone router
● Supports HTML push state
● Uses session state to track the route
● At Tastemade, when you click on a link we

use the backbone router to set our route
(_id) session variable

Rendering Cycle

● Alter session variables or save updates to a
collection

● Triggers redraws and updates to
subscriptions

● When the new data arrives on the client that
can further cause redraws

Demo - real time,
templates, session

variables

Methods

● How do you talk to services outside of
Meteor?

● Not everything has to run the client.
● Define callable methods on the server that

act like traditional REST calls
● For example we wrote a stripe integration

where the code runs on the server

Security & Accounts

● Built-in User collection (Meteor.User) that
integrates with the account system

● Current user record is a reactive data source
● Collections have ACLs that run on the client

and server
● All the usual accounts api (login, reset

password, signup, etc.)
● Built-in UI for accounts management or roll

your own
● Supports SSL with the force-ssl package

Packages

● Meteor packages are different because they
inject code on the client and server

● atmoshpere.meteor.com
● Support for NPM packages on the server

Testing

● Tinytest - simulates the meteor runtime

Deployment

● Meteor.com
● Use the bundle command to generate a

plain node.js application
● Heroku buildpacks
● AWS

Hot code pushes

● Ensures all the clients are running the
current code

● For connected clients, page automatically
reloads and maintains all session and form
variable state

● Automatically versions JS and CSS

Demo - Stripe
integration, atmosphere

How does it compare to Backbone
and Angular?

● Handles the backend and front end. Larger
more integrated stack.

● Compared to backbone, it's not MVC.
Eliminates duplicate code between server
and client. Backbone isn't reactive. You still
need to write the code to update the DOM.

● Compared to angular.js, doesn't require
adding attributes to the HTML. Must
integrate with the server.

Mindshift

● Database in the client
● Use pub sub to move a subset of the

database to the client. Challenging when
you try to implement infinite scroll or “get
more docs”.

● You only query the database in the client
● Reactivity - don't update the DOM with

JQuery. Let Meteor do the work.

Pros

● There's only one front end, one backend,
and one database choice. Your limited, but
they work really well together.

● Very quick development
● Very little server code

Cons

● There's only one front end, one backend,
and one database choice. Limits your
choices.

● Deployment - the Meteor hosted
deployment is not very good. Hosting on
Heroku or AWS is better, but requires some
work

● SEO - the "crawlable" package is not very
good.

● Testing - like any browser heavy application
it can be difficult to test

Criticisms

● Fibers - Meteor is trying to make node
development accessible similar to Ruby on
Rails. They use Fibers to avoid nested
callbacks at the expense of some
performance.

● NPM Packages - now supported
● Security - now supported

Resources

● Eventminded.com - https://www.
eventedmind.com/

● Meteorite - https://github.
com/oortcloud/meteorite

● Discover Meteor book - http://www.
discovermeteor.com/

● Meteor IRC channel on freenode

Questions?

